2018年大学入試センター試験数学2B第1問[2] ②[タ]まで

この記事では、2018年大学入試センター試験数学2B第1問[2]の、[タ]までを解説します。

ここまでの解説は、指数・対数の計算法則をご覧ください。


■ 問題

第1問

[2] cを正の定数として、不等式

  x^(log[3]x)≧(x/c)^3  ……{2}

を考える。

 3を底とする{2}の両辺の対数をとり、t=log[3]xとおくと

  t^[ソ]-[タ]t+[タ]log[3]c≧0  ……{3}

となる。ただし、対数log[a]bに対し、aを底といい、bを真数という。

 c=(9の3乗根)のとき、{2}を満たすxの値の範囲を求めよう。{3}により

  t≦[チ],t≧[ツ]

である。さらに、真数の条件を考えて

  [テ]<x≦[ト],x≧[ナ]

となる。

 次に、{2}がx>[テ]の範囲でつねに成り立つようなcの値の範囲を求めよう。

 xがx>[テ]の範囲を動くとき、tのとり得る値の範囲は[ニ]である。
[ニ]に当てはまるものを、次の{0}~{3}のうちから一つ選べ。

{0} 正の実数全体  {1} 負の実数全体
{2} 実数全体  {3} 1以外の実数全体

この範囲のtに対して、{3}がつねに成り立つための必要十分条件は、

log[3]c≧[ヌ]/[ネ]である。すなわち、c≧([ハヒ]の[ノ]乗根)である。


※分数は(分子)/(分母)、xの2乗はx^2、対数の底やマーク部分の□は[ ]で
表記しています。


■ 赤本と公式サイト

数学の赤本(センター過去問)や、センター試験公式サイトも活用してみると良いかも知れません。


■ 解説

では今回の問題です。

cを正の定数として、不等式「x^(log[3]x)≧(x/c)^3」を考えます。

この式の次に、やるべきことの指示があります。

「3を底とする{2}の両辺の対数をとり」とありますね。

慣れていない人には「それって美味しいの?」レベルの意味不明さかも知れませんが、センター試験では「とにかく誘導の通りにやる」ことが大切です。

log[3]{x^(log[3]x)}≧log[3]{(x/c)^3}

「3を底とする{2}の両辺の対数」をとっただけです。
そのように指示があるので、そうやればOKです(笑)


そう言われても「んで?どうすれば良いの?」と思う人も多いと思います。
すぐには気付かない人も多いですが、実は簡単です(笑)

できた式は対数の式なので、対数の計算法則を使えば良いのです。

log[3]{x^(log[3]x)}は、真数がx^(log[3]x)です。
「真数の指数は対数の係数」なので、log[3]xがもとの対数の係数になります。
つまり・・・

log[3]{x^(log[3]x)}=log[3]x・log[3]x

「t=log[3]xとおく」とあるので、tで置き換えて、

            =t×t=t^2

これでまずは左辺をtで表すことができました。


右辺も同様に、対数の計算法則を適用して、

 log[3]{(x/c)^3}
=3log[3](x/c)        ←真数の指数は対数の係数
=3(log[3]x-log[3]c)   ←真数の分数は対数の引き算
=3log[3]x-3log[3]c
=3t-3log[3]c        ←t=log[3]c

もとの不等式をこれらに置き換えると、

 log[3]{x^(log[3]x)}≧log[3]{(x/c)^3}
           t^2≧3t-3log[3]c
t^2-3t+3log[3]c≧0

よって、[ソ]=2,[タ]=3


次の記事は③[ツ]まで


【高校数学】読むだけでわかる!センター数学の考え方
http://www.mag2.com/m/0001641004.html

vol.353の記事を分割してお送りしています。
1回にまとめてご覧になりたい方は、該当する回を含む月のバックナンバーをご購入ください。


-----------------------------
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  かかる費用は授業料と教材費のみ!生徒募集中です!

プロ家庭教師の江間です。     AE個別学習室
http://www.a-ema.com/k/      http://www.a-ema.com/j/
-----------------------------

この記事へのコメント