本日配信のメルマガ。2018年センター数学2B第1問[1] 三角関数

本日配信のメルマガでは、2018年大学入試センター試験数学2B第1問[1]を解説します。


【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2018年センター試験数2Bより

第1問[1]

(1) 1ラジアンとは、[ア]のことである。[ア]に当てはまるものを、次の{0}~{3}
のうちから一つ選べ。

{0} 半径が1,面積が1の扇形の中心角の大きさ
{1} 半径がπ,面積が1の扇形の中心角の大きさ
{2} 半径が1,弧の長さが1の扇形の中心角の大きさ
{3} 半径がπ,弧の長さが1の扇形の中心角の大きさ

(2) 144°を弧度で表すと[イ]/[ウ]πラジアンである。また、(23/12)π
ラジアンを度で表すと[エオカ]°である。

(3) π/2≦θ≦πの範囲で

  2sin(θ+π/5)-2cos(θ+π/30)=1 ……{1}

を満たすθの値を求めよう。

 x=θ+π/5とおくと、{1}は

  2sinx-2cos(x-π/[キ])=1

と表せる。加法定理を用いると、この式は

  sinx-√[ク]・cosx=1

となる。さらに、三角関数の合成を用いると

  sin(x-π/[ケ])=1/[コ]

と変形できる。x=θ+π/5,π/2≦θ≦πだから、θ=[サシ]/[スセ]π
である。


※分数は(分子)/(分母)、xの2乗はx^2、マル1は{1}、マーク部分の□は[ ]で
表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
対象は小学生~高校生・浪人生まで。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 π=180°
 ◆2 ラジアンは半径が1の円の弧の長さ
 ◆3 π=180°を使って計算

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

センター英語、数学を解説するブログを始めました!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

2016~2018年のセンター試験本試験は全問の解説の掲載が完了しました!
毎日更新中です!


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説

◆1は省略します。


 ◆2 ラジアンは半径が1の円の弧の長さ

では今回の問題を見てみましょう!

(1) 1ラジアンとは、[ア]のことである。[ア]に当てはまるものを、次の{0}~{3}
のうちから一つ選べ。

{0} 半径が1,面積が1の扇形の中心角の大きさ
{1} 半径がπ,面積が1の扇形の中心角の大きさ
{2} 半径が1,弧の長さが1の扇形の中心角の大きさ
{3} 半径がπ,弧の長さが1の扇形の中心角の大きさ

このような設問です。
今◆1で見たように、ラジアンとは「半径が1の円の弧の長さ」を角度の単位
として扱ったものです。

例えば、半径が1の円の円周は2πで、そのときの中心角は360°だから、
「2πラジアン=360°」でしたね?

だから、1ラジアンとは、半径が1の円の弧の長さが1のときの中心角を表します。

よって、{2}が正解です!


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆3 π=180°を使って計算

今回は(2)も「ラジアン」に関する問題でした。

(2) 144°を弧度で表すと[イ]/[ウ]πラジアンである。また、(23/12)π
ラジアンを度で表すと[エオカ]°である。

◆1で述べたように、「π=180°」と考えて計算すれば大丈夫です。

例えば比の式にしてみましょう!
144°が何πなのかを求めたいので・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------

この記事へのコメント