前の問題
数学1A第3問
数学2B第3問
2019年センター数学2B第4問ここまでの記事→①ベクトルの絶対値、②ベクトルの計算
■ 問題
2019年大学入試センター試験数学2Bより
第4問
四角形ABCDを底面とする四角錐OABCDを考える。四角形ABCDは、
辺ADと辺BCが平行で、AB=CD,∠ABC=∠BCDを満たすとする。
→ → → → → →
さらに、OA=a,OB=b,OC=cとして
→ → →
|a|=1,|b|=√3,|c|=√5
→ → → → → →
a・b=1,b・c=3,a・c=0
であるとする。
(1) ∠AOC=[アイ]°により、三角形OACの面積は√[ウ]/[エ]である。
→ → → →
(2) BA・BC=[オカ],|BA|=√[キ],|BC|=√[ク]であるから、
∠ABC=[ケコサ]°である。さらに、辺ADと辺BCが平行であるから、
→ →
∠BAD=∠ADC=[シス]°である。よって、AD=[セ]・BCであり
→ → → →
OD=a-[ソ]・b+[タ]・c
と表される。また、四角形ABCDの面積は([チ]√[ツ])/[テ]である。
(3) 三角形OACを底面とする三角錐BOACの体積Vを求めよう。
→ → → →
3点O,A,Cの定める平面α上に、点HをBH⊥aとBH⊥cが成り立つ
→
ようにとる。|BH|は三角錐BOACの高さである。Hはα上の点であるから、
→ → →
実数s,tを用いてOH=s・a+t・cの形に表される。
→ → → →
BH・a=[ト],BH・c=[ト]により、s=[ナ],t=[ニ]/[ヌ]である。
→
よって、|BH|=√[ネ]/[ノ]が得られる。したがって、(1)により、
V=[ハ]/[ヒ]であることがわかる。
(4) (3)のVを用いると、四角錐OABCDの体積は[フ]Vと表せる。さらに、
四角形ABCDを底面とする四角錐OABCの高さは√[ヘ]/[ホ]である。
※分数は(分子)/(分母)、xの2乗はx^2で、ベクトルの矢印は一部省略、
マル1は{1}、マーク部分の□は[ ]で表記しています。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================
茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。
1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生~高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。
東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
江間淳の書籍→http://amzn.to/2AUQ5GR
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説
では今回の問題です。
まずは問題の内容を確認しましょう!
四角形ABCDを底面とする四角錐OABCDを考える。四角形ABCDは、
辺ADと辺BCが平行で、AB=CD,∠ABC=∠BCDを満たすとする。
→ → → → → →
さらに、OA=a,OB=b,OC=cとして
→ → →
|a|=1,|b|=√3,|c|=√5
→ → → → → →
a・b=1,b・c=3,a・c=0
であるとする。
四角錐OABCDは、四角形ABCDが底面で、Oが頂点ですね。
そして、AD平行BC,AB=CD,∠ABC=∠BCDだそうです。
→ → →
そして頂点Oから底面のA,B,Cへのベクトルをa,b,cとしているようです。
そしてこれらの3つのベクトルの内積が与えられている。という設定です。
つづく
トップページ
【高校数学】読むだけでわかる!センター数学の考え方(月額540円初月無料)
http://www.mag2.com/m/0001641004.html
メルマガでは、ブログの記事数回分を1回にまとめて配信しています。
メルマガ限定で解説を追加している部分もあります。
リクエストにもお応えしますので、何かあればお気軽にご相談ください。
-----------------------------
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します。生徒募集中!
プロ家庭教師の江間です。 AE個別学習室
http://www.a-ema.com/k/ http://www.a-ema.com/j/
-----------------------------
この記事へのコメント