2019年センター数学2B第4問 ⑫[テ]まで

この記事では、2019年大学入試センター試験数学2B第4問の[テ]までを解説します。

前の問題
数学1A第3問
数学2B第3問


2019年センター数学2B第4問ここまでの記事→①ベクトルの絶対値②ベクトルの計算③問題の設定④[アイ]まで⑤[エ]まで⑥[オカ]まで⑦[ク]まで⑧[ケコサ]まで⑨[シス]まで⑩[セ]まで⑪[タ]まで


■ 問題

2019年大学入試センター試験数学2Bより

第4問

 四角形ABCDを底面とする四角錐OABCDを考える。四角形ABCDは、
辺ADと辺BCが平行で、AB=CD,∠ABC=∠BCDを満たすとする。
     →  →  →  →  →  →
さらに、OA=a,OB=b,OC=cとして
   →    →     →
  |a|=1,|b|=√3,|c|=√5
  → →   → →   → →
  a・b=1,b・c=3,a・c=0

であるとする。

(1) ∠AOC=[アイ]°により、三角形OACの面積は√[ウ]/[エ]である。
   →  →       →       →
(2) BA・BC=[オカ],|BA|=√[キ],|BC|=√[ク]であるから、
∠ABC=[ケコサ]°である。さらに、辺ADと辺BCが平行であるから、
                       →     →
∠BAD=∠ADC=[シス]°である。よって、AD=[セ]・BCであり
   →  →    →    →
  OD=a-[ソ]・b+[タ]・c

と表される。また、四角形ABCDの面積は([チ]√[ツ])/[テ]である。

(3) 三角形OACを底面とする三角錐BOACの体積Vを求めよう。
                      →  →  →  →
 3点O,A,Cの定める平面α上に、点HをBH⊥aとBH⊥cが成り立つ
       →
ようにとる。|BH|は三角錐BOACの高さである。Hはα上の点であるから、
          →    →   →
実数s,tを用いてOH=s・a+t・cの形に表される。
  →  →     →  →
 BH・a=[ト],BH・c=[ト]により、s=[ナ],t=[ニ]/[ヌ]である。
     →
よって、|BH|=√[ネ]/[ノ]が得られる。したがって、(1)により、
V=[ハ]/[ヒ]であることがわかる。

(4) (3)のVを用いると、四角錐OABCDの体積は[フ]Vと表せる。さらに、
四角形ABCDを底面とする四角錐OABCの高さは√[ヘ]/[ホ]である。


※分数は(分子)/(分母)、xの2乗はx^2で、ベクトルの矢印は一部省略、
マル1は{1}、マーク部分の□は[ ]で表記しています。



━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生~高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

江間淳の書籍→http://amzn.to/2AUQ5GR

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説

そして、四角形ABCDの面積を求めます。

四角形ABCDは台形で、角度は120°,120°,60°,60°、
辺の長さは、√2,√2,√2,2√2です。

先ほど⑩[セ]までで表したPを用いると、

AP=(√2/2)×√3=√6/2

であり、これが台形の高さになります。
上底も下底もわかっているので、あとは普通に

★台形の面積=(上底+下底)×高さ÷2

をやればOKですね!

四角形ABCD=(√2+2√2)×(√6/2)÷2
       =3√2×(√6/4)
       =(3√12)/4
       =(6√3)/4
       =(3√3)/2

よって、[チ]=3,[ツ]=3,[テ]=2


次の記事→⑬[ト]まで


トップページ


【高校数学】読むだけでわかる!センター数学の考え方(月額540円初月無料)
http://www.mag2.com/m/0001641004.html

メルマガでは、ブログの記事数回分を1回にまとめて配信しています。
メルマガ限定で解説を追加している部分もあります。
リクエストにもお応えしますので、何かあればお気軽にご相談ください。

-----------------------------
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
   最高級の指導を提供します。生徒募集中!

プロ家庭教師の江間です。     AE個別学習室
http://www.a-ema.com/k/      http://www.a-ema.com/j/
-----------------------------

この記事へのコメント