本日配信のメルマガ。2019年センター数学2B第1問[2] 指数対数

本日配信のメルマガでは、2019年大学入試センター試験数学2B第1問[2]を解説します。


【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2019年センター試験数2Bより

第1問

[ 2 ] 連立方程式

  {log[2](x+2)-2log[4](y+3)=-1 ……{2}
  {(1/3)^y-11(1/3)^(x+1)+6=0 ……{3}

を満たすx,yを求めよう。

 真数の条件により、x,yのとり得る値の範囲は[タ]である。[タ]に当てはまる
ものを、次の{0}~{5}のうちから一つ選べ。ただし、対数log[a]bに対し、
aを底といい、bを真数という。

{0} x>0,y>0  {1} x>2,y>3  {2} x>-2,y>-3
{3} x<0,y<0  {4} x<2,y<3  {5} x<-2,y<-3

 底の変換公式により

  log[4](y+3)={log[2](y+3)}/[チ]

である。よって、{2}から

  y=[ツ]x+[テ] ……{4}

が得られる。

 次に、t=(1/3)^xとおき、{4}を用いて{3}をtの方程式に書き直すと

  t^2-[トナ]t+[ニヌ]=0 ……{5}

が得られる。また、xが[タ]におけるxの範囲を動くとき、tのとり得る値の
範囲は

  [ネ]<t<[ノ] ……{6}

である。

 {6}の範囲で方程式{5}を解くと、t=[ハ]となる。したがって、連立方程式
{2},{3}を満たす実数x,yの値は

  x=log[3]([ヒ]/[フ]),y=log[3]([ヘ]/[ホ])

であることがわかる。


※分数は(分子)/(分母)、xの2乗はx^2、対数の底やマーク部分の□は[ ]で
表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生~高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 分数の指数の計算
 ◆2 指数・対数の関係
 ◆3 対数の計算法則
 ◆4 底が正の数なら真数も正の数
 ◆5 底は好きな数にできる

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説

◆1~3は省略します。


 ◆4 底が正の数なら真数も正の数

では今回の問題です。

  {log[2](x+2)-2log[4](y+3)=-1 ……{2}
  {(1/3)^y-11(1/3)^(x+1)+6=0 ……{3}

このような連立方程式のx,yを求める問題です。

指数・対数に慣れていない人にとっては、途方もなく難しく見えると思いますが、
大学入試レベルとしては、普通程度の難易度の式です。
落ち着いてひとつひとつわかることを確認して、式や値を求めていきましょう!

最初の設問では、真数条件より、x,yの値の範囲を表します。

指数対数の底が正の数ならば、その真数も正の数になる。というのが真数条件です。
つまり、もとの数が正の数ならば、それを何乗しても正の数にしかならない。
ということですね。

ということは、log[2](x+2)のx+2は正の数、つまり、x+2>0である
ことがわかります。これを解くと、

x>-2

が得られます。

log[4](y+3)も同様にして、y+3>0よりy>-3ですね。

ということは、x>-2,y>-3だから、[タ]=2ですね!


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆5 底は好きな数にできる

次の問題では、「底の変換公式により」

  log[4](y+3)={log[2](y+3)}/[チ]

という形に式を変形します。

◆3で触れたように、★log[a]b=log[c]b/log[c]aという公式で
右辺の底のcは、好きな数にすることができます。

約分や通分のときに、分子と分母に同じ数を掛ければいろいろな数に変えることが
できるのと同じイメージだと思ってもらうと理解しやすいと思います。

この問題では・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html

"本日配信のメルマガ。2019年センター数学2B第1問[2] 指数対数"へのコメントを書く

お名前:
メールアドレス:
ホームページアドレス:
コメント: